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Modified Thomson Parabola Ion Spectrometers

for Use in Laser Generated Plasma Experiments

Introduction

The study of the velocity distribution of the various positive ion species

generated in laser-produced plasmas can reveal important information of various

plasma processes occurring during the initial production and subsequent

expansion of the plasma. Several schemes ,2 ,3 ,4 have been used to measure these

distributions; however, complications in the analysis often result if electronic

detection systems are implemented. One reason for this is that the minimum ion

flux required for electronic detection becomes unacceptably large for low

velocity ions. This follows because space charge effects dominate the process

of beam expansion at low velocities which in turn necessitates the use of large

collecting detectors and thus reduces velocity resolution. Another complication

arises when the ion strikes an electronic detector and generates secondary

electrons which may be erroneously interpreted as additional ion flux. Since the

number of secondaries is velocity dependent significant distortion in the

measured ion distribution may result if velocities vary considerably over the

measurement. For these reasons it is clear that non-electronic detection can

provide important advantages to circumvent these aforementioned difficulties.

This review presents two such systems which have the flexibility to use

either charge collectors, solid state track detectors, or microchannel plates.

A discussion on the advantages and limitations of each will be presented.

Emphasis is placed on designs for measuring the absolute flux of ions with

velocities from 107 to the mid 108 cm/s.

The Thomson Parabola

Much work has been done using the Thomson Parabola in laser-fusion

experiments.5 ,6  Schematically, the basic configuration is shown in Figure 1.

Ions enter the spectrometer through a pinhole and are then deflected by an

external electric, E, and magnetic, B, field. These ions enter the spectrometer

initially transverse to the applied fields. After a finite distance, they are

deflected and the degree of bending is a function of the field parameters as

Manuscript approved April 24, 1984.
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well as the ion's charge-to-mass ratio and velocity (V). Detailed analysis of

the deflection shall not be derived here since such calculations have been

performed by numerous authors.7,8,9 The results of these analyses show that the

overall x and y displacements are given by

Z eB £ ()

2m;V X(L+~

A m V 2 2

p

where mp is the proton mass and the remaining variables are defined in Figure

1. Combining Equations (1) and (2) to eliminate V gives

-E A m2y = (B) () ( " ) x (3)

el(L + -f)

Therefore, ions of a given charge-to-mass ratio fall on regions forming

parabolas. If one divides Equation (1) into Equation (2) then

y - (i) V x (4)

which indicates that straight lines emanating from the origin on the xy

coordinate plane are lines of constant velocity (see Figure 2).

On the other hand, for extended velocity ion distributions it can be

seen that for a given x coordinate, Xo, the ability to separate individual

traces is a function of Z(Z + 1) namely

(y _ y - A - (5)

E p o A (6)
B e(L +£/2) Z(Z + 1)

2



This effect is illustrated in Figure 2. By knowing this dispersion, one can

then identify various charge states even if not all charge states are present.

It is interesting to note that for a given type of ion (i.e., carbon ions), the

distance between points of constant velocity on adjacent parabolas does not

change in spacing, namely,

AR (x2 + + y2  )/2 - (x2 + y2 )1/2  (7a)
Z z+1 z z

R2 1/2

A R e (L + B (7b)

Therefore, if the ions produced all have nearly the same velocity, then

identification can become difficult. If AR is obtained experimentally the last

expression can also be solved for the ion velocity giving

v= +l + 1 B1/2 (8)

where

et(L + -)
- Am AR

p

Two factors limit the practical dynamic range of the Thomson Parabola.

First, space charge will tend to expand the low energy portion of the parabolas

making measurements difficult. Second, the lower pole magnet will stop the low

velocity ions from leaving the pole piece region. To calculate this lower limit

velocity, the pinhole to lower pole distance, H, must be specified. Then the

minimum velocity, Vmin , is given by,

V m X[.I (Z) eE 1/2 (10)Vmin 2 A m2 H- (0

P

and is plotted in Figure 3 for various charge-to-mass states. However, one

cannot make H abritrarily large to increase the dynai-nc range. A system

constraint that X/H be greater than - 4 is necessary to avoid serious fringe

field effects. In addition, . cannot be made arbitrarily large because of beam

expansion due to space charge. In particular, beam divergence is given by
9
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r(L + 2.) eZVn-

,....~V (s E, ') 1/2 (1

where: r= initial pinhole radius (cm)

r, = radial divergence at the image plane (cm)

* C - ion energy (eV)

e = electronic charge (e.s.u.)

c - 8.85 x 10-12

n - ion number density (#/cm3)

* Equation (11) can be expressed in terms of velocity and is given as

r (L+ L)Zv -

rI = 158.2 0 (12)
V- v

where all terms are in terms of practical c.g.s. units. If one combines

Equation (10) and (12), then the maximum beam expansion can be determined,

namely,

r M 2.3 x 10- 3 r (I + -L)Y/Zn H(13)
max o X n E

where all terms are in c.g.s. units except for the electric field given in units

of volts/m. Notice that rmax is independent of ion mass. This is because the

minimum velocity which can pass through the spectrometer is inversely

proportional to the square root of the ion mass. This exactly cancels with the

reduction in beam divergences because of ion inertia. Figure 4 shows the

.4= calculated dependence of rl/ r 0 as a function of - V for various ion densities.

Another factor which influences the final beam expansion is due to

geometrical divergence. Even for a point source, the beam expansion at the

image plane is given by

= o (D + £ + L) -rr2 D 0

(14a)

0 (X + L) (14b)

4
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where D is the target-pinhole distance. Typical beam expansion of 10% can occur

when D is taken to be 50 cm and L and . are taken to be 2.5 cm. This effect can

be comparable or greater than the beam expansion due to space charge at high ion

velocities.

Besides determining the minimum ion velocity required to traverse the

- spectrometer, the pinhole-to-pole-gap distance will also determine a maximum y

displacement which is independent of charge state. This is given by

Ymax ~ +--) (15)

and is plotted for various H values in Figure 5.

A conventional Thomson Parabola type system under consideration will

analyze ions with velocities from A to 108 cm/s. For entrance pinhole

diameters of less than 50 pm, space charge or geometric divergence does not

appear to be a serious problem. The lower charge state should be more easily

resolved because of smaller beam divergence and wider separation between

adjacent parabolas as indicated in Equations (11) and (6) respectively.

One method for detection of ions utilizes solid state track detectors which

has been successfully employed when ion velocities are in excess of a few times

108 cm/s. 10  An important proviso to this, however, is that the ion strikes the

surface normally. If the ion strikes the surface at an angle, the threshold

velocity will be increased. To date, the most sensitive track detector used for

ion registration is CR-39.11  It can be chemically etched in NaOH (6.25 N) from

2 to 3 hours at 700 C and then examined optically under a microscope. The

efficiency of detection is close to 100% when velocity threshold conditions are

reached and is insensitive to electron or x-ray backgrounds.

Such a detector is currently being examined to record the ion parabolas.

To detect the upper ends of the parabolas where the ion velocities are small

(i.e., less than 2 x 108 cm/s), it will be necessary to include a post-

acceleration stage to accelerate the ions to velocities necessary for track

registration. A spectrometer which incorporates a post-acceleration stage is

shown in Figure 6. Experimental studies suggest that an acceleration potential

of at least 18 KV is necessary for satisfactory track registration.
1 0
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With the introduction of the acceleration potential, the track trajectories

are no longer parabolas. After the ion leaves the deflection plates it travels

a distance L in rectilinear motion (i.e., no forces applied on the ion). The

ion velocity components in the x and y directions are given by

: =zeBX
. = eBL(16a)

XAm
P

zeE£ (16b)
4 AmV (16b

p

When the ion reaches the acceleration grid, it then travels a distance L from

the grid to the detector's surface. The time T, required to travel this

" distance is given by
.4

-: + (V2 ze 1/2 z

[t = V + V + 2(e A E) ] m/(ze .) (17)

where E is the electric field in the acceleration region. Therefore, the ion

travels an additional distance kT and T in the x and y directions

respectively. This results in the generation of ion traces governed by the

equations

x = Z eB (L + + VT) (18a)

y = ( ) eE - (L + + VT) (18b)

M V
p

Using Equations (17) and (18a) one can find an expression for V given by

A 3V + A V2 + A IV + A = 0 (19)

where

!A ZeE 12
A = Am (L + 1 )1 (20a)

P
.
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A 2 Z eE (L + 1) x (20b)

p

= ) - g - - L +- + ) (20c)
2 B2, Am2

p

A3 = 2- (20d)

It is now possible to solve for V and substitute it into equation (18b) to find

the analytic relation between x and y.

It is not surprising however that for certain range of parameters the ion

traces should appear to be approximately parabolic. Consider the two extreme

limits when E + - and E + 0. For E + -, the ions trav across the

acceleration region in a time approaching zero. This implies iat the spatial

distribution does not change while passing through the gaT Thus the ion
distributions appear to be parabolic. In the other extreme ca, !n E + o, the

ions free stream and the analysis is equivalent to the typical Thomson

Parabola. Therefore, again the ions should form parabolic traces. Figure 7

shows the transition from almost no accelerating field to very large fields. As

demonstrated, the parabolas expand outward as the field is reduced.

One feature which does remain exactly the same is that straight lines

emanating from the origin on the xy coordinate plane are lines of constant

velocity. This is shown by dividing Equation (18a) into (18b) into each other

and again producing Equation (4).

Even though detection can be achieved with the addition of an acceleration

potential, it is by no means a trivial matter to record low charge state ions.

For example, C+ 1 initially having a velocity of 2 x 107 cm/s would require an

acceleration potential of - 240 KV before reaching a velocity necessary for

registration. Such requirements are severe and may not be easily achievable.

To circumvent this difficulty, microchannel plates (MCP) may be required.

Here gains from 104 to 108 are possible depending on whether a single or

multistage MCP is used. However, such devices must be operated in vacuum having

pressures of 10-6 torr or better. If the vacuum system in which the plasma is

generated does not meet this requirement, differential pumping must be utilized

7
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inside the spectrometer. A recent development by Galileo Electro-Optics

WCorporation now offers curved-channel microchannel plates (C2 MCP)12,13 with

gains as high as 106 with 15-30 pm spatial resolution. These devices have

significantly reduced the degree of ion feedback which increases the operating

lifetimes compared with conventional multi-stage microchannel plates (i.e.,

chevron configuration). In addition, the C2 MCP's do not suffer from the space

charge defocusing problems inherent in the chevron devices.

A third method for the detection of ions is the use of charge collectors

which are shaped in the appropriate forms. This technology has been used

successfully in the past to obtain semi-quantitative information of the ion

distribution. However important limitations to such an approach not only

includes the problem of secondary electron emission but also the inflexibility

of the devices. Specific parabolas must be constructed for each charge state.

If other type ions are present, a new set of collector strips need to be made

and accurately positioned. In addition, factors such as fringe field effects of

the deflector plates can introduce focusing aberrrations which are not

accurately known making exact fabricating and positioning of the collectors even

more difficult. Lastly, appropriate shielding is required to eliminate the

large RF background level occurring during the time of ion collection.

Modified Thomson Parabola

A variation of the standard Thomson Parabola is shown in Figure 8. Again

the electric and magnetic fields are initially perpendicular to the ion

trajectory. However unlike the standard Thomson parapola, the modified Thomson

Parabola positions the detector inside the magnets' gap perpendicular to the

applied fields. Such a device has not been reviewed in the literature and thus

an analysis of the focusing properties of the spectrometer will be presented.

The equation of motion for an ion of charge z and a mass Amp is given by

Am x = -ZezB (21a)P

Am py = ZeE (21b)
dp

Am z= ZekB (21c)
p

8



Taking the time derivation of Equation (21c), solving for x , and substituting

into Equation (21a) yields

Am_ =- 2 V (22)

- which has the general solution,

Vz = C1cos(Wt) + C2sin(wt) (23)
5 Ze

where W - (-B) (ion cyclotron frequency) (24)
Am
p

• Ze
The initial conditions that Vz  Vocos e and Vz =- BV sin~cos at t=O

requires that P

C1 = Vocos (25a)

C2 - Vosin~cos (25b)

where 6 and 0 are the usual spherical coordinate angles and are defined in Fig.

9. Upon integration of Equation (23) and applying the boundary condition that

z=O at t=O gives

V

Z [cosesin(wt) - sin~cosO(cos(wt)-l)1 (26)

Using Equations (21a) and (23) and the initial condition V x V sin~coso at

t=O, one can calculate Vx namely,

V = V cosecos(Wt) + V sinecosdsin(wt) (27)

x 0 0

- Integrating Equation (27) and applying the boundary condition that x=O at t=O

gives

V0

X --! [sinecos~sin(wt) + cos6(cos(,t)-l)] (28)X

combining Equations (26) and (28) results in

5.
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.7 V

= tanecos - tan(wt/2)
i-tanscosl tan(wt/2) (29

Since w is a function of Z/A, then for a given charge-to-mass ratio, the slope

of the trace on the x-z plane is a function of the entrance angle and the time

spent inside the spectrometer. This time can be easily determined by

integrating Equation 21b and the boundary conditions V =V sin~sino and y = H at

t-O then this equation integrates to obtain

F 2 2 2 Ze )12
ot = Vosin8sino + V sin Gsin 2 + 2= E (y-H) - E (30)

S0 Am/A

iFor a given x-z plane, the time spent inside the spectrometer is a function of

Z/A as well as e and *. By collimating the ion beam, so that to lowest

order e and 0 are set equal to zero, the above equations simplify to

V
z = -S sinwt (31)

wW
0 = (coswt-l) (32)

x/z = -tan (wt/2) (33)

t =2 (Am_2) (Y H) 12(34)
~ Ze' E

t=-"[2(Y:H) (Ze (35)

Notice that both x and z are directly proportional to Vo . If one plots z

vs. (-x) one would obtain a family of straight lines all of which would

intersect the origin. The slope of each line would be determined by the charge-

to-mass ratio of the ion. This is a considerable improvement over the standard

Thomson Parabola when data gathering requires manual scanning. Also notice that
the velocity dispersion is constant unlike the standard Thomson Parabola. This

' feature can greatly simplify data reduction. One disadvantage of this device

however is that it requires much larger deflecting fields. Therefore, care must

10
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be taken to insure properly designed electrodes to minimize the possibility of

electrical breakdown.

Ion traces calculated for such a modified Thomson Parabola spectrometer are

shown in Figure 9. Notice that unlike the standard Thomson Parabola, the

spatial resolution improves with ion velocity.

Conventional solid state detectors may not be adequate for implementation

inside the spectrometer. This is because the angle of incidence may be too

shallow to effectively record the ion tracks. The angle of impact 9, as defined

in Fig. 11 is given by

sin- (1 + 2 (1) (- v-/2 (36)A m V
p 0

where v is the potential difference between the position where the ion first

enters the spectrometer and where it strikes the track detector. Figure 10

plots the impact angle as a function of charge-to-mass ratio and the entrance

velocity. The ions can be made to strike the track detector surface closer to
the detector's normal by the use of a post-acceleration potential located near

the detector's surface, but difficulty in controlling electrical breakdown on

the track detector surface has been encountered. This problem may be partially

resolved with the use of C2MCP's but the angular dependence of the impacting

ions on surface of these devices is gain dependent. Unlike track detectors

however, no post acceleration potential is required to achieve velocity

threshold requirements.

Conclusions

The conventional Thomson Parabola with the addition of a post-acceleration

section appears to best meet the needs for studying velocity distributions of

S. various ion species in laser-produced plasmas possessing velocities of the mid

to upper 107 cm/s depending on the ion charge state. This spectrometer has the

advantages that the deflection fields are small and that the post-acceleration

section is physically separate from the deflection region. Also the post-

accelerated ions strike the detector surface approximately normally resulting in'i
lower velocity threshold conditions for ion track registration.

or Nc. i11



For lower velocity ions, the use of C2MCP's appear attractive for use in

the conventional spectrometer. It does offer on-line analysis of the data and

does not require a post-acceleration potential.

Significant improvements in data acquisition and analysis in the modified

Thomson Parabola over the standard Thomson Parabola can be achieved if the

technical difficulties associated with electrical breakdown and ion registration

can be solved. These advantages specifically result from the fact that the ion

traces are linear which simplify the analysis immensely, both in terms of ion

identification as well as from the fact that the velocity dispersion is constant

over velocity space.
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THE THOMSON PARABOLA

DETECTOR
Y

ENTRANCE PINHOLE LOW VELOCITY
FT~1 IONS

HIGH (ZJA),VELOCITY '-// ION PARABOLA
ION E 8IONS TRACES

SOURCE (ZIJA) 2

ION TRAJECTORY

FIL FREE FIGHT DISTANCE (L)

.4 i FLIGHT DISTANCE I

-. 44- Arle elcrc adFge depiction of a conventional Thomson Parabola ion spectrometer utilizing

paralelelecricandmagnetic deflection fields to separate ions of

differing charge-to-mass ratios. After deflection, the ions are spatially

recorded on a recording medium such as a track detector. These ions

produce a family of parabolic traces of which each member is a unique

signature of the ion's charge-to-mass ratio. Ions of differing velocities

fall on different locations on the parabolic traces.
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Figure 3
Minimum ion velocity required to traverse the Thomson Parabola spectrometer

as a function of deflection voltage. The parameter 9X and HI were taken to

be 2.54 cm, and 4 m respectively.
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THE MODIFIED THOMSON PARABOLA

ENTRANCE PINHOLE z

(ZIA)1 i HIGH VELOCITY
(ZA)2  IONS

*O E - DETECTOR (Z/AI3

SOURCE TRACES
ION TRAJECTORY "

1x

LOW VELOCITY
IONS |ZIA)l < (Z/A)2 < (ZIA)3

y

NOTE: ION UNE SLOPE IS NOT VELOCITY DEPENDENT

Figure 8

A depiction of a Modified Thomson Parabola ion spectrometer. Ions are

deflected by an electric and magnetic field onto a recording medium located

on one of the poles of a magnetic piece. A family of straight line traces

are produced on the recording medium by the ions of differing charge-to-

mass ratios.
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Figure 9

Calculated carbon ion traces produced in a Modified Thomson Parabola.
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ION IMPACT ANGLE vs ION ENTRANCE

60 - 15 KV
20KV -ZA .

50-

-jH

30-.0

20-

10

1 2 3 4 5 6 7 X 107

ION VELOCITY (cm)

Figure 10
A plot of the ion impact angle as a function of ion velocities for two

* acceleration potentials and various charge-to-mass states.
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